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Abstract 

 

The deflection limitations of electrostatic flexure-beam actuators are well known [64].  

Specifically, as the beam is actuated and the gap traversed, the restoring force necessary 

for equilibrium increases proportionally with the displacement to first order, while the 

electrostatic actuating force increases with the square of the potential difference across 

the gap, as well as the inverse square of the gap.  Equilibrium, and thus stable open-loop 

voltage control, ceases at one-third the total gap distance, leading to an unstable actuator 

snap-in.  A Kalman Filter is designed with an appropriately complex state dynamics 

model to estimate actuator deflection accurately given voltage input and capacitance 

measurements, which are then used by a Linear Quadratic controller to generate a closed-

loop voltage control signal.  The constraints of the latter are designed to maximize stable 

control over the entire gap.  The design and simulation of the Kalman Filter and 

controller are presented and discussed, with static and dynamic responses analyzed, as 

applied to basic, 100 µm by 100 µm square, flexure-beam-actuated micromirrors 

fabricated by PolyMUMPs. Successful application of these techniques enables 

demonstration of smooth, stable deflections of 50% and 75% of the gap. 



 

vi 

Acknowledgments 

 

First and foremost, I’d like to convey my sincerest gratitude for the guidance, insight, 

support, and patience shown to me by Lt Col Lavern Starman and Dr. Ron Coutu.  I’d 

also like to sincerely thank Mr. Mike Camden of AFRL/VACC and Dr. Tom Nelson of 

AFRL/RYDP and respective division leadership for their support and gracious latitude 

during this endeavor.  In particular, I’d like to thank Dr. Matt Grupen of RYDP for his 

patiently explaining the philosophical nature of capacitance and entertaining other 

random science questions.  Last but not least, I’d like to thank my wife, whose inspiration 

and support in this effort was unequivocally essential. 

  

 
       Jamie P. Schnapp 

 

 

 

 

 

  



 

vii 

Table of Contents 

 
Page 

Abstract ................................................................................................................................v 

Acknowledgments.............................................................................................................. vi 

Table of Contents .............................................................................................................. vii 

List of Figures .................................................................................................................... ix 

1. Introduction ...................................................................................................................1 

1.1. Background.........................................................................................................1 

1.2. Related Work ......................................................................................................4 

1.3. Problem Statement..............................................................................................6 

1.4. Scope ..................................................................................................................7 

1.5. Preview ...............................................................................................................7 

2. Background ...................................................................................................................9 

2.1. Chapter Overview ...............................................................................................9 

2.2. Fabrication ..........................................................................................................9 

2.3. Flexure-Beam Micromirror ..............................................................................12 

2.4. Analytical Model ..............................................................................................14 

2.5. Beam Theory ....................................................................................................17 

2.6. Squeeze-Film Damping ....................................................................................21 

2.7. Stability.............................................................................................................23 

2.8. Kalman Filter ....................................................................................................26 

2.9. Extended Kalman Filter ....................................................................................28 

2.10. Linear-Quadratic-Gaussian (LQG) Control ...................................................29 



 

viii 

3. Modeling .....................................................................................................................31 

3.1. Chapter Overview .............................................................................................31 

3.2. Pull-In Voltage .................................................................................................31 

3.3. Effective Spring Constant.................................................................................34 

3.4. Parasitic Capacitance ........................................................................................37 

3.5. Fluid Damping ..................................................................................................42 

3.6. Transient Analysis ............................................................................................43 

4. State Estimator and Controller Design .......................................................................45 

4.1. Chapter Overview .............................................................................................45 

4.2. State Estimator Design .....................................................................................45 

4.3. Controller Design .............................................................................................52 

4.4. Script Implementation ......................................................................................56 

5. Results and Conclusions .............................................................................................59 

5.1. Introduction ......................................................................................................59 

5.2. Observer Results ...............................................................................................59 

5.3. Controller Results .............................................................................................64 

5.4. Conclusions ......................................................................................................67 

5.5. Future Work......................................................................................................68 



 

ix 

List of Figures 

 

Figure Page 

1. Packaged scanning micromirrors ...................................................................................1 

2. Flexure-beam micromirror device .................................................................................3 

3. PolyMUMPS process layers ........................................................................................10 

4. FBMD layout ...............................................................................................................12 

5. FBMD modeled mechanically and electrostatically ....................................................14 

6. Bifurcation diagram .....................................................................................................25 

7. Block diagram of closed-loop feedback of the KF ......................................................27 

8. Three-dimensional model of the FBMD ......................................................................31 

9. Deflection and total charge versus input voltage in CoventorWare ............................33 

10. Simulated mechanical restoring force versus deflection .............................................34 

11. Simulated post-process capacitance .............................................................................38 

12. Damping force and deflection versus time ..................................................................41 

13. Mirror plate deflection versus time in COMSOL ........................................................43 

14. Norton Equivalent Circuit ............................................................................................46 

15. Assumed Certainty Equivalence Block Diagram ........................................................55 

16. Observer-estimated voltage across FBMD and deflection versus time .......................58 

17. Residuals and filter-calculated uncertainty ..................................................................59 

18. Observer error in voltage and in deflection .................................................................59 

19. KF estimate of voltage across FBMD for diverging deflection ...................................60 



 

x 

20. KF-calculated residuals and uncertainty for diverging deflection ...............................61 

21. Observer error in voltage and in deflection for diverging deflection ..........................61 

22. Controlled voltage and deflection versus time for yd of 1 micron  ..............................62 

23. Residuals and filter-computed uncertainty for yd of 1 micron .....................................63 

24. Controlled voltage and deflection versus time for yd of 1.5 micron  ...........................64 

25. Residuals and filter-computed uncertainty for yd of 1.5 micron ..................................65



 

1 

LINEAR-QUADRATIC CONTROL OF A MEMS MICROMIRROR USING 
KALMAN FILTERING 

 
 

1. Introduction 

1.1. Background 

In the past decade, the field of MicroElectroMechanical Systems (MEMS) has 

enjoyed rapidly accelerating scientific research and commercial adoption [63].  

Advancements in fabrication techniques and simulation tools have enabled greater system 

refinement and understanding.  As an illustration of the maturity of the field, MEMS-

based accelerometers, such as Analog Devices’s ADXL-50, have been universally 

adopted since 2001 for airbag deployment [63], while MEMS pressure sensors are now 

standard features in automobiles [63], and chips containing millions of MEMS 

micromirrors, with mean times between failure on the order of 20 years and a trillion 

cycles, are commercially available [1].  Single micromirrors with two-dimensional 

scanning capability, as those shown in Figure 1, are commercially available “off-the-

Figure 1:  Packaged scanning micromirrors, 

commercially available from Adriatic Research, 
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shelf” in standard dual inline packages. 

Fabrication variability and analytical complexity, however, continue to limit the 

growth of MEMS.  For the PolyMUMPs process in particular (albeit a pathological 

example primarily used for education), parameter deviation of 20% from nominal values 

published by MEMSCAP has been reported [5], all but eliminating the possibility of 

highly accurate modeling.  Exacerbating this problem, variation in device dimensions can 

be magnified in system-level parameters quadratically or even cubically, depending on 

application.  Consider, for example, a rectangular flexure beam of the classical comb 

resonator; a 20% decrease in width of this beam will result in a 50% smaller moment of 

inertia, which will be directly reflected in the effective spring constant of the beam, and 

thus the resonant frequency of the device.  Combine this magnification with complex 

geometries and strong coupling between the applicable physics regimes, and traditional 

approaches to actuator design and control become nearly intractable.   

The Kalman Filter (KF) is uniquely suited to estimating parameters and operating 

variables that are otherwise difficult to measure.  More commonly used in autopilot and 

inertial measurement systems, KFs exploit knowledge about system and sensor dynamics, 

noise sources, and initial conditions to provide a running, quantitative characterization of 

a system.  In this capacity, KFs act as a class of stochastic observers, which can then be 

used to extend the capability of a controller by increasing the observability of that which 

is to be controlled.  With accurate estimates of physical parameters, the observer 

increases the controller’s insight into the system, generally allowing more efficient 

control actions.   
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The flexure-beam micromirror device (FBMD), shown in Figure 2, exemplifies 

the type of nonlinear, highly dynamic system for which a KF may be employed to great 

benefit.  A well-known artifact of most electromechanical microactuators is the so-called 

pull-in voltage; that is, the voltage at which mechanical restoring forces cease to balance 

Coulombic attractive forces, and the electrodes snap together as a result of the lost 

equilibrium.  This condition uniformly occurs at approximately one-third of the total 

available travel distance, commonly referred to as the “gap,” leaving two-thirds without a 

stable operating point.  Furthermore, such an uncontrolled impact accelerates contact 

wear and causes hysteresis in the gap versus applied voltage, since stiction (a Van der 

Waals force that causes two surfaces in contact to be “sticky”) adds to the force needed to 

return to equilibrium.  In the worst case, this stiction is permanent and leads to device 

failure, which constitutes the major factor in determining device reliability.   

Only for testing purposes, however, are FBMDs constructed such that the gap is 

directly measurable.  This is usually accomplished by back-etching through the bottom 

electrode of the FBMD, shining a laser on the moving plate, and collecting 

interferometric data, thereby optically measuring the distance travelled by the 

Figure 2:  Flexure-beam micromirror device [11] 
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micromirror [5].  Another method of collecting the same data without the back-etch is a 

down-looking interferometer, such as the popular Zygo white-light interferometer; 

placing a control sensor in the path of incoming signal, however, would inevitably 

decrease the utility of the micromirror.  Furthermore, interferometry takes time to acquire 

data and signal processing to convert data into a meaningful measurement of 

displacement, which severely handicaps the bandwidth of any controller implementation.  

The additional fabrication processing steps, additional light source, and associated 

electronics needed to perform this measurement, moreover, add system complexity so as 

to be inappropriate for an array implementation, as well as cost prohibitive for 

implementation on any commercial scale.  The work presented here attempts to 

demonstrate the utility of using a KF to estimate this gap purely as a function of input 

current and measured voltage across the FBMD, using known system dynamics, initial 

conditions, and approximate sensor noise strengths, enabling nearly instantaneous 

measurement. 

1.2. Related Work 

Much work has been done to control electrostatic MEMS actuators, most of 

which with the goals of extending the operating travel range, and/or increasing 

positioning accuracy [5].  These efforts can be divided into several categories: 1) 

geometrical, in which the device structure is adjusted to increase the effective mechanical 

spring constant, or increase the stroke length; 2) open-loop control, which manipulates 

the input signal to create desired effects based on empirically or analytically identified 

system parameters; and 3) closed-loop control, which uses some sort of error signal to 
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tune the input signal.  With respect to an intended application, each method has 

advantages and disadvantages. 

Changing the geometry of the device often complicates the fabrication process, 

with the benefit of relatively simple operation.  This is usually done to enhance the 

effective spring constant, or create and/or control a nonlinear restoring force, thereby 

extending the actuator stroke.  Common themes include a phased flexure [6][33], such 

that supports and/or beams are activated as deflection increases, effecting a nonlinearly 

increasing spring constant with increasing deflection; bottom electrode sizing and 

positioning [11][14], in which the capacitance area or fulcrum position is varied such that 

increasing deflection exposes more (or less) of the bottom electrode; and optimization of 

the device structure with respect to the pull-in voltage [18]. 

Open-loop control attempts to maintain an unstable position by varying the input 

waveform, despite not knowing the real-time actuator deflection.  This variation is based 

upon insight into the system dynamics, usually from analytical modeling, or empirical 

system identification.  Waveforms may take the form of pulsed voltage [13][29][35], or 

charge [7][28], or of continuous, “preshaped” signals [12].  While the structure itself 

remains relatively simple in terms of fabrication, open-loop control requires drive 

electronics complex enough to generate non-trivial waveforms, and, more importantly, 

generally features less accurate deflections than similar closed-loop methods as a result of 

a lack of robustness to process variations, environmental challenges, or deviations from 

system concept of operations.  Inaccurate deflection control does not prevent snap-in, but 

rather modestly extend the deflection range. 
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Comprising the majority of research in the area is that of closed-loop control.  

Efforts range from applying classical linear controllers to simplified equations of motion 

[3][4][5][10][16][22][25][27][31][32][34][43], to adding compensators to effect feedback 

linearization [8][17][21][22][28][37][38][39][40][41], to generating fully nonlinear 

control laws [20][45][46][47][48][49].  Some designs employ full- or reduced-order 

observers [2][9][15][19][23][25][26][30][32][42][46], which estimate, in real-time, the 

position and/or velocity of the actuator based upon measured parameters (e.g., 

capacitance).  These observers then update the assumptions made by the controller, 

making it adaptive. Less common methods include neural networks [1], fuzzy logic 

[18][19], sliding mode control [36], port-controlled Hamiltonian systems [22], and 

passivity-based control [23][24][26]. 

1.3. Problem Statement 

The instability of electrostatic flexure-beam actuators beyond one-third of the gap 

across which the potential is applied leads to a nonlinear “snap-in” effect that limits the 

effective range of controllable actuation and dramatically reduces operational lifetime.  

From a control design standpoint, this problem is exacerbated by limited system 

observability (nominal structures exclude feedback sensors) and wide parameter 

variability.  The Kalman Filter, used in conjunction with a Linear-Quadratic-Gaussian 

(LQG) controller, is uniquely suited to estimate unobservable states in the presence of 

such parameter variability and noise sources, owing to its simple measurement system, 

scalability to large arrays, and straightforward digital implementation.  This powerful 
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combination enables real-world, full-gap actuator positioning and controllable snap-in, 

thereby eliminating the dominant failure mechanism. 

1.4. Scope 

This work is limited to a proof-of-concept observer/controller pair as applied to a 

single micromirror geometry.  While the approach presented is equally valid for 

alternative geometries, material systems, and actuator schemes, only one will be 

explored.  Furthermore, no attempt to create a deployable system will be made.  Issues to 

be considered for robustness enhancement, such as external shock or vibration forces, 

changes in ambient temperature or pressure, and performance degradation over time, will 

be left to follow-on research.  Lastly, since this work is a proof-of-concept, hardware 

implementation will be simulated and limited to that which is required for developmental 

validation of the control algorithms; electronics integration, footprint minimization, and 

packaging will also be left for future work. 

1.5. Preview 

This research is presented in five chapters.  Chapter 1 introduces the problem, 

motivates the solution, and delineates past research with similar aims.  The problem 

statement clearly identifies the goal of the work, while the scope sets boundaries and 

specifies starting assumptions. 

Chapter 2 presents background theory in sufficient detail such that the reader can 

understand the design process described in later chapters.  In particular, a summary is 
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included of PolyMUMPs fabrication steps, the mechanical and electrostatic physics of 

flexure-beam actuators, and Kalman Filter and LQG controller operation. 

Chapter 3 describes the modeling and the control law development.  The 

COMSOL Multiphysics modeling and simulation software is used to generate nominal 

charge and position versus time trajectories, upon which the KF is based.  Lastly, the 

LQG controller is derived from actuator position and velocity requirements. 

Chapter 4 discusses the performance of the control laws developed in Chapter 3.  

Results from MATLAB simulations are compared to the nominal trajectories by 

statistical analysis, with the system performance indicated by the state error means and 

covariances.  A micromirror fabricated in PolyMUMPs is then used to accomplish a 

hardware-in-the-loop test for real-world performance, the latter characterized by 

comparing discrete gap measurements to the KF estimate. 

Chapter 5 provides conclusions and suggestions for future work.  The system is 

judged based upon the results in Chapter 4, and performance shortfalls highlighted and 

explained.   
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2. Background 

2.1. Chapter Overview 

The purpose of this chapter is to summarize the foundations upon which this work 

is built.  First, the PolyMUMPs fabrication process is described step by step, and key 

artifacts highlighted.  Second, the FBMD layout is presented in the context of 

PolyMUMPs fabrication.  Third, a first-order analytical model is derived from the 

respective physical regimes (mechanical, electrostatic, and fluid dynamics).  After this 

derivation, the stability of the model is analyzed for controller suitability.  Last, the 

Kalman Filter and Linear Quadratic Gaussian control are introduced for further 

discussion in Chapter 4. 

2.2.  Fabrication 

The MEMSCAP Multi-User MEMS Processes (MUMPs) is employed to fabricate 

prototype MEMS devices for government, industry, and academia worldwide.  In 

particular, PolyMUMPs features three, surface-micromachined polysilicon layers, two of 

which are releasable (that is, the layer immediately beneath can be etched away to 

“release” the polysilicon above it), and one metallization layer.  The fabrication process 

is fixed and enforced by design rules specified by MEMSCAP [66].  These are described 

below and illustrated in Figure 3 in order to elucidate eccentricities of the process. 

First, n-type (100) silicon wafers, 150 millimeters in diameter, are pre-treated by 

heavily doping the surface with phosphorus in order to help prevent charge accumulation 

between the substrate and isolation layers.  This isolation layer is then created by 0.6 µm 
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of low-stress low-pressure chemical vapor deposition (LPCVD) silicon nitride, followed 

by a 0.5 µm polysilicon layer, called poly0.  This polysilicon layer is also deposited by 

LPCVD, photolithographically patterned, and etched via plasma etching.  The first 

sacrificial layer, oxide1, consisting of 2.0 µm of phosphosilicate glass (PSG) [66], is 

deposited next by LPCVD at 580 ºC and then annealed at 1050 ºC in argon.  This anneal 

reduces residual stress and dopes the lower polysilicon layer to a concentration of 1x1019 

cm-3 [67].  Stiction-preventing dimples are created by reactive-ion-etching (RIE) 0.75 µm 

holes into the PSG layer at this stage.  Anchor points, which connect the second 

polysilicon layer and the substrate (anchor1), are similarly produced by RIE immediately 

following the dimple etch. 

Starting with the deposition of the polysilicon layer, the process is essentially 

repeated, with some differences.  The second polysilicon layer, poly1, is 2.0 µm thick and 

deposited by LPCVD at this step.  This is followed by a PSG layer to act as a hard mask 

Figure 3:  PolyMUMPs process layers [66] 
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for the polysilicon etch, which is subsequently removed by RIE.  Next, yet another PSG 

layer is deposited 0.75 µm thick and annealed to act as the second sacrificial oxide layer, 

oxide2.  Two different etch masks are used at this point: the first to create a connection 

between the second and third polysilicon layers (poly1-poly2 via); and the second to 

connect either the first and third polysilicon layers, or poly2 to the nitride layer 

(anchor2). 

 The last polysilicon layer, poly2, is now deposited 1.5 µm thick.  A 0.2 µm PSG 

layer is again used as a hard mask and dopant source for the third polysilicon layer; each 

are patterned, and the PSG removed as before.  The final layer, metal (0.5 µm of gold 

with a thin chromium adhesion layer), is lithographically patterned, deposited by electron 

beam evaporation, and patterned using lift-off.  With the fabrication complete, the wafers 

are diced, sorted, and shipped.   

Three points must be emphasized.  First, the process inherently produces 

conformal layers; that is to say, if a design contains a feature in poly0, the poly layers 

above it will drape over the poly0 shape, like a rug lying over a book. The effect is that 

the flexure-beam actuators fabricated in PolyMUMPs are not the straight beams 

commonly modeled by Newton-Euler analytical beam-bending equations.  They instead 

have angles, which will affect the restoring force generated by the beam for a given load.  

Second, successive layers of polysilicon undergo fewer anneal stages, which affects both 

the conductivity and the strength of the layer.  In particular, the Young’s Modulus of the 

first polysilicon layer has been measured to be approximately 20% less than the second, 

while exhibiting half the resistivity [68].  Third, residual stress must be managed 
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thoughtfully in PolyMUMPS devices.  As an artifact of bonding two materials with 

different coefficients of thermal expansion, residual stress manifests most apparently as 

bowing in layers of poly2 and metal.  A bowed flexure beam will deflect differently than 

an unbowed beam of similar composition, while a bowed mirror will feature a different 

capacitance due to the non-uniform gap.  These effects will be studied in Chapter 3. 

2.3. Flexure-Beam Micromirror 

The micromirror design on which the present work is composed is shown in 

Figure 4, as fabricated in PolyMUMPs, described above.  The mirror plate is a 100 µm  

by 100 µm poly1 square, with five etch holes to ensure all oxide is removed with the 

Figure 4:  FBMD layout 
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release process (shown as orange in Figure 4), each 3 µm by 3 µm.  A poly0 square of 

dimensions equal to the poly1 mirror plate is immediately below the plate (orange in the 

figure) and serves as the bottom electrode, typically held at ground.  Note that the poly0 

connection between the bonding pad and the electrode is reflected on each side of the 

square; this is to ensure symmetry in the three-dimensional shape of the flexures given 

the conformal process.  That is to say, the released flexure beam will have upward and 

downward bends with respect to the plane of the substrate, as it conforms over the poly0 

connection.  The symmetry of the electrode encourages uniform response from each of 

the four flexure beams.  The flexures are each 100 µm long by 3 µm wide poly1 beams, 

attached to the mirror plate by 3 µm long by 8 µm wide poly1 connectors. These 

connectors in this application act as torsion springs, as the faces attached to the mirror 

and flexure beam rotate with respect to each other as the mirror deflects.  Located on the 

substrate side of each of these connectors is a dimple, which prevents the mirror plate 

from coming into physical contact with the bottom electrode, minimizing the possibility 

of stiction, and electrical shorting.  10 µm by 10 µm poly1 anchors attach each of these 

beams to the substrate, thereby fixing one end to a rigid post (the other end is only fixed 

to the torsion spring connector, and is allowed to move in space).  One anchor point is 

attached to a 50 µm by 50 µm poly2 bond pad, which creates a conductive path between 

the mirror plate and the bond pad and enables an external voltage source to generate a 

potential difference between the plate and bottom electrode. 
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2.4. Analytical Model 

Analytically modeling the FBMD promotes understanding of the pull-in 

phenomenon and allows meaningful exploration of possible solutions.  As mentioned 

above, the FBMD is held in equilibrium by two opposing forces: the mirror plate is 

electrostatically attracted down towards the bottom electrode as a result of an applied 

potential; and the flexure beams mechanically resist the electrostatic force and restore the 

plate to an initial, quiescent distance, g0, away from the bottom electrode, as illustrated in 

Figure 5.  The output restoring force of the flexures is generally modeled, to first order, 

by Hooke’s Law, i.e., linearly proportional to the amount of induced deflection in the 

beams, with the proportionality constant thought of and referred to as the spring constant, 

k: 

Figure 5:  FBMD modeled mechanically as a simple harmonic oscillator and 

electrostatically as a parallel plate capacitor 
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  (1) 

where g0 is the quiescent gap distance; d is the mirror plate deflection distance from g0; 

and g is the gap distance.  Various schemes are used to adjust the effective mechanical 

restoring force in order to meet system design requirements for resonance frequency, 

operating voltage, and the gap-versus-voltage hysteresis.  These schemes include 

changing the beam material or geometry (e.g., I-beam-like cross section); increasing the 

number of flexures or attachment point (e.g., attaching at the middle of the mirror edge 

rather than the corner shortens the beam and increases k, as shown in Section 2.5.3); and 

lever arm implementation [14].  A Duffing spring model may increase accuracy by 

adding a cubic deflection term fitted to data by proportionality constant.  This model is 

one method to account for nonlinear spring softening with increasing deflection.  The 

literature reports yet more complicated effects [11]. 

By contrast, the electrostatic force is inversely proportional to the square of the 

distance between the mirror plate and the bottom electrode plate, g, and proportional to 

the square of the potential difference across the plates.  This force is derived from the 

well-known expression for the energy U stored in a parallel-plate capacitor in steady-state 

and the definition of capacitance:  

  

(2) 

where Q is the total charge on the two plates; C is the capacitance; V is the potential 

difference across the plates; g is the distance between the mirror plate and the bottom 

electrode as above; A is the area of the plate; and εo is the free space permittivity.  The 
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force is then defined as the negative gradient of the potential energy.  Since this system 

has only one degree of freedom, the gradient is simply the first partial derivative with 

respect to g:  

  
(3) 

Although Equation (3) increases the polynomial order of the static equation, as well as 

numerical complexity as a result of the discontinuity at zero gap, it is far from a complete 

characterization of reality.  First, each of the four flexures accumulates charge, thereby 

acting as four additional capacitors with respect to the ground plate and varying with 

deflection.  Second, the parallel plate model assumes parallel, infinite plates.  Since the 

FBMD is finite, the electric field is not wholly contained between the plates, but rather 

extends outside, giving rise to what are known as fringing fields.  Moreover, the parallel 

plate model neglects the thickness of the plate; in reality, the sides of the plate also 

generate electric fields, which must be accounted in the aggregate electrical potential 

energy.  Last, the parallel plate model assumes a uniform gap, but as mentioned in 

Section 2.2, the mirror plate is not perfectly rigid and may demonstrate some measure of 

bowing in the center.  Although to lesser effect, the flexure beams may also demonstrate 

bowing in addition to the bump discussed in Section 2.2 and shown in Figure 8, either 

down as a result of the weight of the mirror plate, or up as a result of residual stress.  The 

capacitance of the FBMD is simulated in Chapter 3, and the magnitude of these non-ideal 

extensions will be quantified to show that the fringing fields are by far the largest non-

ideal effect; flexure capacitance and plate thickness contributions are negligible.   
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2.5. Beam Theory 

2.5.1. Introduction 

Beam deflection is described analytically by the Euler-Bernoulli equation for 

beam bending.  As a differential equation, any of uniform or point loads and moments 

can be used as forcing functions, and fixed (clamped), free, or simply supported end faces 

may be used as boundary conditions.  The equation is a simplification of linear elasticity 

theory with the following assumptions: the beam is subject only to pure bending, i.e., no 

torsional or axial loads; the material is isotropic and homogeneous, i.e., the flexural 

rigidity is constant; the material is linearly elastic and will not reach the plastic 

deformation limit, i.e., Hooke's Law is obeyed; the beam is initially straight with constant 

cross-section throughout; an axis of symmetry is in the plane of bending; the proportions 

of the beam are such that it would fail first and foremost by bending; and cross-sections 

of the beam remain planar during bending.  Ineluctable deviations from these 

assumptions are addressed after the derivation. 

2.5.2. Derivation 

The static Euler-Bernoulli beam equation may be shown to be the result of 

combining four basic relationships.  First, a kinematics equation specifies how the beam 

moves.  In one-dimensional, linear beam theory, this amounts to describing how each 

point in a lengthwise cross-section of the beam is displaced with deflection; this 

displacement is equivalent to the strain in the beam.  By assuming that deflections are 

small and that the neutral plane does not change in length under load, the beam bends 

into an arc of curvature χ, and the angle θ through which the widthwise cross-section 
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moves can be equated using the small angle approximation to the negative of the slope of 

the deflection w:   

 
 (4) 

Second, a constitutive equation relating how the beam moves in response to external 

forces is specified.  For approximately linear materials, Hooke's Law is employed:   

 
 (5) 

where σ is stress, ε is strain, and E is Young’s Modulus.  Third, using so-called force 

resultant equations, the point-by-point aggregate effect of these external forces in a 

widthwise cross-section is quantified by integrating the appropriate stress over the cross- 

 section and equating the result to moments M and shear forces V: 

Last, equilibrium is established for each infinitesimal length by equating the change in 

shear force to pressure load p and the change in moment to the shear force resultant:   

 
 (7) 

 
 (8) 

Using algebra, the ratio of pressure load (force per unit length) to rigidity can be shown 

to equal the fourth derivative of deflection with respect to length, i.e., the canonical 

Euler-Bernoulli beam bending equation: 

 
 (6) 
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 (9) 

Each successive derivative of the deflection given by the Euler-Bernoulli equation 

has a corresponding physical interpretation.  The first derivative with respect to the length 

along which the beam deflects is, for small values, the angle between the neutral axis and 

the beam.  The second derivative is the net moment on the beam, while the third 

derivative is the net shear force.  Net load per unit length is represented by the fourth 

derivative.  Each of these may balance a static or dynamic forcing term that models the 

type of operation the beam is performing; e.g., a diving board would have a point load 

(force multiplied by a Dirac delta function with domain shift corresponding to the 

position of the force) as a forcing term for the fourth derivative.  As stated above, several 

support types can be represented through the appropriate use of boundary conditions.  For 

example, setting the deflection and slope of one end to zero models a fixed support at that 

end, while no deflection and no net moment represents a pin connection.  Boundary 

conditions must be set carefully in order to properly capture the physics. 

2.5.3. Lumped-model Effective Spring Constant 

A lumped-model parameter consolidates the gamut of complex physical processes 

into a “black box,” a computationally simple—or at least more straightforward—

abstraction that approximates an output for a given input.  This abstraction often imitates 

the functional form of a more familiar relationship, e.g., a mass-spring system or basic 

circuit.  In the present case, the deflection of a flexure beam in an FBMD is modeled as a 

simple, linear spring obeying Hooke’s Law, with a restorative force linearly proportional 



 

20 

to the distance deflected.  The process begins with the Euler-Bernoulli equation for beam 

supporting a point load at the free end, with the latter realized in boundary conditions.  In 

particular, the fourth derivative of deflection with respect to beam length, i.e., pressure 

per unit length, is set to zero.  Assuming a constant flexural rigidity EI, both sides of this 

equation are integrated four times, yielding a cubic polynomial for deflection versus 

length position with four indeterminate constants of integration.  Boundary conditions are 

then applied: position and slope of the fixed end of the beam are set to zero; the slope of 

the free end is set to zero as a result of being attached through a hinge to the mirror plate; 

and the shear force at the free end of the beam is set to equal the point load.  After 

solving for the deflection at the free end, the point load is solved for as the dependent 

variable in terms of this deflection; the result is an equation that emulates Hooke’s Law 

for linear springs:   

 
 (10) 

The proportionality constant, twelve times ratio of the beam flexural rigidity and the 

length cubed, is considered as the effective spring constant, “lumped” into which are the 

essential physics quantified by the Euler-Bernoulli equation.  As each of the four flexures 

contributes this restoring force, the total mechanical restoring force is provided by four 

springs, thus the effective spring constant is multiplied by four. 

2.5.4. Non-idealities / Extensions 

The above litany of constraining assumptions can, in several cases, be modified to 

extend the validity of the equation.  First, beam dynamics may be analyzed by the 
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addition of the second derivative of deflection with respect to time, scaled by mass per 

unit length of the beam, to the left-hand side of Equation (9).  Second, superposition may 

be employed to model three-dimensional, distributed, transverse loading, as well as 

composite beams through the flexural rigidity term.  Materials not obeying Hooke's Law 

may be modeled by the appropriate constitutive equation describing the relationship 

between stress and strain of the material system.  In this way, viscoelastic or plastic 

deformations and nonlinear material behavior are incorporated, thereby generalizing the 

Euler-Bernoulli equation.  Geometrically nonlinear beams may be accounted for by 

dividing the second derivative of deflection by the three-halves power of the slope 

squared with unity offset.  This divisor enables a more accurate description of an initially 

curved beam, e.g., a cantilever with residual stress, as physically motivated in Section 

2.2.  Large deflections (i.e., bending radius equal to or smaller than one-tenth of the 

cross-section) may be approximated by multiplying the moment of inertia by a function 

that increases inversely with the radius of curvature, and by adding another moment term 

to the second derivative of deflection that does the same.  Last, thick beams, for which 

the transverse shear strain is non-negligible, must depart from Euler-Bernoulli treatment 

entirely and be analyzed with the Timoshenko beam theory.   

2.6. Squeeze-Film Damping 

To guarantee a thorough analysis, the application of MEMS devices outside a 

vacuum should take into account the effects of submersion in a viscous fluid.  For the 

dynamic operation of the FBMD used in the present work, air between the bottom 

electrode and mirror plate is forced outward as the mirror is pulled down, while it is 
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conversely pulled inward as the mirror is restored to its initial position.  This movement 

of air dissipates energy in the system by opposing the motion of the mirror in both 

directions.  As such, it can be modeled as a dashpot on its effect in a mass-spring system. 

A number of simplifying assumptions can make tractable the Navier-Stokes 

equation—a nonlinear partial differential equation governing fluid dynamics.  First, the 

fluid is assumed to be isothermal and Newtonian; that is, the ratio of the shear stress 

exerted by the fluid (drag) to the rate of strain is equal to the viscosity of the fluid, a 

constant.  Ignoring thermal variation is equivalent to assuming uniform proportionality 

between density and pressure.  Second, viscous forces (the fluid’s resistance to 

deformation by shear or tensile stress) are assumed to dominate over inertial forces (the 

fluid’s resistance to changes in momentum), known as Stokes flow, or creeping flow; this 

is due to the dimensions of the FBMD being small enough that the dynamic viscosity of 

air is much larger than the mass of the air in the cavity.  As a result, the general Navier-

Stokes equation can be simplified to the Reynolds equation, another second-order partial 

differential equation closely resembling the classical heat equation with internal heat 

generation [63].  Further, assuming a uniform fluid thickness, small pressure variation 

with respect to the ambient, and small mirror plate displacements reduces the Reynolds 

equation to a simple Poisson’s equation, readily solved analytically using a Green’s 

function.  The result is in a form germane to the present work, namely, a function that is 

linearly proportional to the velocity of the mirror plate to within a constant.   

A more exact formulation takes into account unique features of the MEMS, such 

as compressibility effects, slip-conditions, and large mirror plate displacements.  
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Compressibility effects describe the disproportionate fluid outflow as a result of mirror 

displacement and can be treated as additional stiffness in the mass-spring system [51].  

Slip-conditions reduce the damping constant by taking into account the lack of continuum 

as the mean free path of fluid molecules becomes significant with respect to the fluid 

thickness [56].  The solution to the Poisson’s equation displays a strong dependence on 

film thickness, so it is intuitive to understand that, as the mirror plate displacement 

increases with respect to the nominal, the damping coefficient will increase as well [69].  

All three of these effects can be taken into account to first order by multiplying by 

appropriate scaling factors. 

2.7. Stability 

To maintain equilibrium, the electrical and mechanical forces must be equal.  By 

Equation (3), the electrical force increases quadratically with the beam deflection, while 

the mechanical restoring force increases linearly.  The voltage corresponding to the 

largest stable deflection, known as the pull-in voltage, can be found by equating the 

mechanical (Equation (1)) and electrical (Equation (3)) forces, solving for the voltage, 

and finding the minimum voltage with respect to the distance between the plate and the 

bottom electrode, resulting in the following: 

 
 (11) 

where keff is the total effective spring constant for all flexure beams.   

The steady-state stability of the canonical FBMD is most often characterized in 

terms of the pull-in point.  Going a step further, however, it can be shown (by equating 
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Equations (1) and (3) and solving for g) that, for simple models at a particular voltage, 

exactly two steady-state equilibrium solutions exist: one globally stable position in the 

gap and one unstable position.  The latter corresponds to a deflection past one-third of the 

total gap.  At the pull-in point, one solution exists, beyond which all positions become 

unstable.  Physically, this phenomenon is a result of the inability of the linear mechanical 

spring to maintain equilibrium with the quadratic electrostatic force throughout the gap; 

as the input voltage or charge increases, causing increased beam deflection and decreased 

electrode separation, both the electrical attractive force and mechanical restoring forces 

increase.  From zero deflection to the pull-in point, the mechanical force increases 

enough to maintain steady-state equilibrium with the electrical force, but after this point, 

the mechanical force can no longer increase by a large enough amount to balance the 

electrical force with its greater rate of increase.  Having lost equilibrium, the top 

electrode snaps into the bottom electrode with an acceleration proportional to the net 

force, resulting in the eponymous phenomenon. 

By including the dynamics of the system, analytical characterization of the pull-in 

phenomenon can be obtained.  Inertial and damping forces are added to the steady-state 

equation as in the following:   

 where A, B, m, k, , and V are the mirror plate area, damping coefficient, plate mass, 

effective spring constant, free-space permittivity, and applied voltage, respectively.  The 

 
 (12) 
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variables of Equation (12) are then made nondimensional for ease of analysis through the 

following translations: 

 
 

 

 

(13) 

 
where t is time, to produce 

 
 (14) 

A bifurcation diagram of the static, non-dimensionalized system is shown in Figure 6.  

The dotted line corresponds to the fold, i.e., at two-thirds of the quiescent gap space, g0, 

only one ζ (non-dimensionalized input voltage) exists.  The shaded gray area corresponds 

to the unphysical region where the deflection is greater than g0.  As asserted above, for 

each voltage input ζ less than unity, two χ values exist: one greater and one less than one-

third.  It can be shown that the former is an unstable equilibrium and the latter stable [63].  

The existence of equilibria, however unstable, beyond a third of the gap motivates the use 

of closed-loop control.  
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2.8. Kalman Filter 

A Kalman Filter (KF) incorporates sets of equations describing system dynamics 

into a state-space model, which it combines with known inputs, initial conditions, and 

model uncertainties in order to estimate how the states—observable or not—and their 

associated covariances change over time.  In the basic form, this model is a matrix of 

linear, first-order differential equations, discretized for easy use with digital computers 

and sample-and-hold sensors.  Model uncertainty is assumed to be described by a 

Gaussian distribution with zero mean; in this way, only the first two statistical moments 

need monitoring.  Deviations from this assumption, such as biases or non-Gaussian 

processes, can be modeled by augmenting the state dynamics model with noise transfer 

Figure 6:  Bifurcation diagram of static, non-dimensional system 

ζ 

χ 
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functions driven by white Gaussian noise.  Estimates of the states’ evolution, propagated 

forward in time using the dynamics model, are refined each sample period by reading a 

measurement, and calculating the divergence between the actual and expected values for 

that measurement.  This divergence, known as the residual or innovation and shown in 

Figure 7, provides real-time performance data of the KF; modeling inadequacies will 

manifest most frequently as spikes, biases, or divergence. The filter gain is then updated 

based on knowledge of uncertainties in the measurement process and dynamics model by 

taking the ratio of the dynamics covariance and the residual covariance.  The product of 

the new gain and residual is added to the estimate, generating a state estimate for the next 

sample period, which serves as the output of the filter.  A high filter gain has the effect of 

weighting the measurement more than the expected value in the KF output, while a low 

gain has the opposite effect. 

The importance of the residual data must be emphasized, as it is constitutes the 

primary means by which the adequacy of the dynamics model may be quantitatively 

measured.  Real-world system deployments do not, in general, enjoy access to truth data 

at all, much less in real-time; as such, absolute estimation errors with respect to truth may 

not be quantified.  In lieu of truth data, KF designers analyze residual data for indications 

of model inadequacies.   Residual data from an adequate dynamics model will feature a 

zero mean, no spikes, and root-mean-square values for each measured state equal to or 

less than system tolerances for deviations. Plots of residual data will be presented in 

Chapter 5 for the current system and analyzed using these metrics. 
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2.9. Extended Kalman Filter 

The Extended Kalman Filter (EKF) expands upon the operation of the linear KF 

by taking into account nonlinearities inherent in the dynamics of the system, without 

working with the nonlinear equations directly.  Using the current state estimate as the 

operating point, the EKF employs a first-order Taylor polynomial to describe the 

instantaneous system dynamics, which is then used, along with covariance and 

measurement data as in the KF, to produce a new state output.  A consequence of this is 

that the matrices required to generate the state estimate are not precomputable as they are 

for the linear KF, thus increasing computation time considerably. 

The advantage of this scheme is greater accuracy in estimating strongly nonlinear 

effects than a KF with a system dynamics model linearized about a static operating point; 

significant errors can be the result of neglecting strong nonlinear effects, or poor choice 

Figure 7:  Block diagram illustrating closed loop feedback of 

the KF 
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in operating point.  While the penalty of computation is undeniably greater than that of a 

linear KF, it remains less than the direct use of nonlinear equations, with acceptable 

accuracy for a variety of applications.  

2.10. Linear-Quadratic-Gaussian (LQG) Control 

The LQG controller minimizes a quadratic cost function assigned to some or all 

states of a linear or linearized, stochastic system that is disturbed by additive, white 

Gaussian noise.  Continuous or discrete measurements, functionally related to some or all 

states, are assumed to be corrupted by additive, white Gaussian noise of zero mean and 

fed back to the controller.  Although assumed to be not applicable here, non-zero-mean 

noise sources may be modeled by an appropriate shaping filter driven by zero-mean, 

white Gaussian noise.  For the purposes of this work, discrete-time sensor data is 

assumed to be available as the analog-to-digital conversion of sampled, continuous-time 

data. 

The cost function is defined as the first moment of the sum of the states and 

control inputs over all time and the desired final state, each squared and weighted 

according to the constraints of the design and the tractability of the problem.  

Equivalently, states can be replaced by expressions quantifying deviation from a 

reference trajectory.  In either case, control inputs are found such as to minimize the cost 

function, with a conceptual “control energy” commensurate with their respective weights.  

That is to say, the larger the weight, the larger the control effort is expended in driving 

the state or deviation to zero, or the smaller the control input.  The former is useful in 

accurate trajectory tracking applications, for example, while the latter might conserve 
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finite available energy or smooth the controller response. 

Minimization of the cost function is accomplished by solving a trio of Riccati 

differential equations, two running forward in time and one running backward.  Those 

running forward model the state and covariance dynamics and constitute the estimator 

problem, as solved by the KF and EKF described above and shown in Figure 7 as 

“Optimal State Estimate.”  The backward-running equation solves for the feedback gain 

matrix, the product of which, with the state estimate (i.e., the output of the KF), 

determines the gains in the general control law to be applied to the system, as well as the 

“Model of System Dynamics” box in Figure 7.  This input is submitted to a zero-order 

hold and applied at the start of the next sample period.  The control law for this work is 

derived and specified in Chapter 4. 
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3. Modeling 

3.1. Chapter Overview 

An accurate model is essential to the function of an observer such as the Kalman 

Filter. The observer estimates system states—such as velocity or accumulated charge—

and disturbances using knowledge from the model and about the passage of time. 

Typically, as it is here, the model is a state-space representation of the relevant equations 

of motion.  

This chapter is devoted to the development of such a model for the micromirror 

described in Chapter 2 by means of simulation and analysis.  Various nonlinearities 

particular to the FBMD under consideration were introduced in Chapter 2 and will be 

quantified here through simulation.  First, a pull-in voltage study is performed in 

CoventorWare, from which parasitic capacitance and effective spring constant are 

derived.  Next, squeeze-film damping is modeled in COMSOL Multiphysics.  These 

effects are combined into a governing equation of motion, which is solved in MATLAB 

in order to characterize nonlinear transients. 

3.2. Pull-In Voltage 

CoventorWare contains an algorithm to detect pull-in conditions during its 

simulation of electromechanically deformed geometries.  When engaged, the algorithm 

checks the calculated displacement for divergence, indicating a pull-in condition.  

CoventorWare then simulates an input equal to the mean of the last converging and 

diverging inputs, iterating until either the simulation takes a maximum number of steps, 
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or the result is less than a set tolerance—that is, a change in calculated deflection.  The 

result of this iteration constitutes the last point of stable equilibrium before pull-in. The 

pull-in voltage for the present study’s nominal FBMD is calculated in this manner.  

A three-dimensional model of the FBMD is created first by drawing its layout in 

Tanner L-Edit. This layout file specifies, based on user input, the length and width of all 

desired layers in the PolyMUMPS process.  The file may be imported into CoventorWare 

and, when combined with the appropriate PolyMUMPS fabrication process definition, 

which specifies the process described in Chapter 2 in a standardized way, CoventorWare 

creates a three-dimensional model, complete with material definitions and layer 

thicknesses (Figure 8).  Note the conformal nature of the process reflected in the shape of 

each of the flexures via the rectangular “bump” near the supports.  

Bump 

Figure 8:  Three-dimensional meshed CoventorWare model of the FBMD with an 

input voltage of 8 V. 
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The pull-in study begins by specifying mechanical and electrical boundary 

conditions: the poly0 layer is immobile and connected to the electrical ground; the poly1 

flexure supports are immobile; no external mechanical load is applied to the mirror plate 

or flexures; no mechanical contact between surfaces; and poly1 is connected to the input 

voltage.  As such, the poly1 flexures and mirror plate are free to respond to electrical and 

mechanical forces and move in space.  With boundary conditions in place, an input 

voltage trajectory is set in CoSolveEM to be applied to the FBMD’s input—in this case, a 

voltage ramp from 0 V to 25 V in 0.5 V steps.  This voltage range was determined by 

solving Equation (11) with the FBMD dimensions specified in Chapter 2 and the 

parameters measured by MUMPS in Run 77 (composite Young’s Modulus E of 131 

GPa), yielding an analytically expected pull-in voltage of 18.35 V.  Equation (11) does 

not take into account any of the non-idealities described in Chapter 2, so the simulated 

voltage range was well in excess of the analytical pull-in point to ensure pull-in was 

captured. Also note that the CoventorWare simulation assumes steady-state conditions. 

The simulation is executed, and the pull-in voltage is found to be 21.44 V (Figure 

9).  For each input voltage in the trajectory up to pull-in, the corresponding mechanical 

force, electrical force, total charge accumulated in poly1, total capacitance, and deflection 

are calculated.  These results show strongly nonlinear mechanical force versus voltage, as 

well as nonlinear charge versus voltage, indicating a nonlinear parasitic capacitance.  

Each of these will be discussed in the following sections.  
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3.3. Effective Spring Constant 

In Chapter 2, a simple analysis based on Euler-Bernoulli equations for beam 

bending, shown in Equation (10), was presented to be used as a lumped model parameter 

in a mass-spring-damper construct.  This equation yields a value of 12.576 N/m for an 

effective linear spring constant using the same Young’s Modulus as above of 131 GPa.  

This analytical value is now compared against a full three-dimensional simulation in 

CoventorWare, which includes the rigid support stacks, hinges, and residual and internal 

stresses.  To enable a direct comparison, the simulated mechanical force is plotted against 

geometrical deflection from rest height, on which a linear regression is performed, 

forcing the zeroth order term to zero (Figure 10).  The slope of this line, corresponding to 

the simulated effective spring constant, is found to be 15.056 N/m, with a correlation 

Figure 9:  Deflection and Total Charge versus input voltage; pull-in occurs at 

21.44 V 
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coefficient of 0.9999.  The latter quantity belies indication of a high degree of linearity of 

the line, as the regression calculation is dominated by a preponderance of points at small 

deflection, tending to be more linear.  Divergence from the line increases with deflection, 

but in the domain of interest, the effect remains small enough to be neglected. 

Several non-ideal mechanisms contribute to this discrepancy, one of which is the 

restoring force of the hinge connecting the flexure beam to the mirror plate.  This hinge is 

8 µm in the direction parallel to the length of the flexure (w), and 3 µm perpendicular (l), 

creating a 3 µm space between flexure and mirror.  As the flexure deflects from the 

nominal height and the mirror descends, a torque is introduced in the hinge, which adds 

Figure 10:  Simulated mechanical restoring force versus deflection; 

effective k=15.059 N/m 
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to the mechanical potential energy of the flexure beams.  This deflection is never more 

than 2% of the length L of the flexure, thus in the limit of small angles, the ratio of the 

vertical displacement to the flexure length approximates the angle over which the torque 

is applied.  Assuming the force inducing the torque is applied perpendicularly to the lever 

arm (in this case, the flexure beam), the equation from [19] is modified: 

 
 (15) 

where w is the width of the hinge as above; t the thickness (2 μm); E is Young’s 

Modulus; l the length of the hinge as above; d the maximum distance of the flexure 

deflection; and μ is Poisson’s Ratio for polysilicon (0.22 [67]). This equation models the 

hinge as another linear spring in series with the flexures, thereby adding a small, but non-

zero, value of 0.013 N/m to the effective spring constant—the lumped model 

parameter—of the system. 

Another stiffening effect is that of two-dimensional strain, commonly referred to 

as the plate effect.  As the ratio of flexure width to length increases, so too does the 

curling of the beam in the axis of width, around the axis of length, creating what 

resembles a valley or half-pipe, with a curvature opposite in sign to that of the flexure 

deflection. The net result of this transverse curling is in effect to stiffen the flexure, and is 

usually modeled by use of a biaxial modulus in place of Young’s modulus in the 

analytical beam-bending equations.  This biaxial modulus is calculated by dividing the 

Young’s modulus by difference of unity and Poisson’s ratio of the material, and, since the 

latter is always less than one, the biaxial modulus is always greater than the Young’s 
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modulus.  The Euler-Bernoulli equations can be re-derived to remove this dependence on 

Poisson’s ratio, allowing direct insight into the effect of the width-to-length ratio.  As the 

width-to-length ratio for the system currently studied is 0.03, it is found [70] that the 

plate effect is likely not a source of deviation. 

Another possible source of effective spring constant deviation is the increase of 

structural compliance if the design features built-up, pillar-like supports, such as the 

flexure beam anchors described for the current FMBD in Chapter 2.  These supports are 

able to rotate in the presence of external moments induced by residual stress.  It is found 

that this can be analytically modeled [70] as a small (relative to that designed) increase or 

decrease in mechanical flexure length.  That is to say, a beam attached to an anchor that 

rotates behaves similarly to a slightly longer beam.  Finite element modeling results and 

analytical estimations in [70] for maximum cantilever deflection versus several drawn 

mask lengths were plotted.  It was found that the addition of 5.85 micron to the cantilever 

design length in the analytical equations fits the FEM data well.  For this work, 

subtracting 5.85 micron to the nominal design length of 100 micron yields, via Equation 

(10), an expected mechanical spring constant of 15.069, within 10% of that simulated in 

CoventorWare.  This structural compliance, combined with the addition of torsion spring 

action as described above, are then the dominant effects in deviating from the first-order 

estimation in Equation (10). 

3.4. Parasitic Capacitance 

This section serves to summarize modeling of the capacitance of micromirrors as 

simulated in CoventorWare.  To start, the micromirror was simulated for input voltages 
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ranging from zero to pull-in, the latter being estimated by Coventor’s pull-in detection 

algorithm.  For each voltage, a total accumulated charge, deflection distance, and 

capacitance was recorded and exported.  Excel was then used to tabulate the results for 

comparison to theory and fitting. 

As an initial sanity check, the exported capacitance values were plotted against 

the ratio of accumulated charge and voltage for each input voltage, and found to match 

exactly.  The former was then plotted against the familiar equation for the capacitance of 

infinitely long parallel conductors, employing the mirror plate area and exported 

deflection distances.  Stark differences between the exported capacitances and theory 

were seen, both magnitude and rate of increase near the pull-in voltage. 

 A lumped parameter model was sought to include these nonlinearities, likely the 

results from neglecting the fringe field effects and capacitive contributions from the four 

flexure beams.  This model was to take the form of the original, first-order equation for 

parallel plates, but using an effective area that would account for the aforementioned 

nonlinearities.  Both this effective area model and that of exported capacitance were 

strongly nonlinear near the pull-in voltage and converge with increasing input voltage; 

the maximum divergence of 3.945 fF (roughly one order of magnitude smaller) occurs at 

3.50 V.  A misguided attempt to fit an analytical equation to this divergence curve 

resulted in a power law with a correlation coefficient of 0.997.  This approach was 

abandoned due to complexity.  Instead, a linear regression against the simulated 

capacitance versus gap data was performed and found to model more closely the 

difference between theory and observed capacitance over the range of gap values (Figure 
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11).  The correlation coefficient for this linear fit was 0.9999.  Separately, Microsoft 

Excel’s linear least-squares regression function, LINEST, was used to fit a linear 

equation directly (in contrast to the difference curve above) to the exported capacitance 

versus the inverse of the exported gap, with y-intercept forced to zero.  Dividing the fitted 

slope by the free-space permittivity yielded the effective area: 1.07x10-8 m2. 

The contributions of fringe fields and the flexures were investigated in an attempt 

to explain observed differences between theory and simulation.  First, the flexures deflect 

according to the Euler-Bernoulli equation (Equation (9)) presented in Chapter 2, and can 

Figure 11:  Simulated post-process capacitance; ratio of simulated total charge and 

voltage; differential charge over voltage ratio; Leus's fringe field corrected capacitance 

[71]; and basic parallel plate capacitance versus input voltage 
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be considered as capacitors with one planar plate and one curved plate.  Since the inverse 

of this equation is difficult to integrate analytically, an approach emulating a Riemann 

sum is taken to model the flexures as a series of parallel-plate capacitors, connected in 

parallel, with gap equal to the amount of deflection at that distance away from the fixed 

support.  As this is a first-order attempt to quantify the order of magnitude of flexure 

capacitance, fringe fields, non-uniformities introduced by fabrication, and the fact that the 

ground plane is not directly below the flexure are ignored.  The analysis proceeds by 

dividing the flexure into ten equal parts, calculating the deflection at the midpoint of each 

part to be used as the gap between plates, inserting this gap into the capacitance equation 

for parallel plates, and adding the contributions for the ten sections and four flexures.  

The resulting contribution is two orders of magnitude smaller than that of the mirror 

plate, and therefore may be neglected. 

Fringe fields are modeled by previous work [71] in an analytical equation that 

accounts for non-zero plate thickness, side, and edge effects.  The equation itself is a 

modified version of earlier work, the result of which is a Schwartz-Christoffel conformal 

mapping transformation describing the electric field with parallel-plate boundary 

conditions.  What results underestimates the simulated capacitance at low voltages (larger 

gaps) and overestimates at high voltages (smaller gaps), but only by a maximum of three 

percent, outperforming both the basic parallel plate theory and the parallel plate equation 

linearly fitted effective area.  This performance supports the need to consider fringe fields 

in an accurate treatment of the total capacitance. 
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The differential definition of capacitance, i.e., the ratio of the change in charge 

and the change in input voltage, is necessary as the basic theory for parallel plates 

assumes a static and uniform gap between the plates; since this gap has a voltage 

dependence (indeed, the modus operandi of electrostatic actuation), the differential 

definition of capacitance is more appropriate.  To generate this differential data for 

comparison, a linear voltage trajectory was again applied to the device, offset from the 

original trajectory by 0.1 V, which enables a quasi-static differential analysis.  As a 

second sanity check, this differential model and the original capacitance data were both 

plotted against input voltage and found to be strikingly dissimilar, providing some 

evidence for the inadequacy of CoventorWare’s use of the steady-state definition of 

capacitance, which is the total accumulated charge divided by potential.  CoventorWare 

obtains each of the values in this ratio by first inferring a surface charge on conductive 

surfaces based on changes in the electric displacement vector, and then integrating over 

the total surface area of the structure, yielding a total charge.  The latter is then divided 

by input voltage and exported as a total capacitance.  This can be seen by simply dividing 

the exported total charge by the known input voltage, which exactly follows the exported 

capacitance curve.  The trouble with this approach is the relationship between the charge 

and the potential.  The latter is defined, to first-order, as the strength of the electric field, 

E, set up between charges on the mirror plate and ground plane, multiplied by the 

distance between the charges, d, i.e., V=Ed.  Since this device is electrostatically 

actuated, the accumulated charge interacts with this distance by design; in particular, a 

feedback loop is set up between the distance between the plates and the amount and 
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location of charge on each plate.  To assume a constant distance is a mistake, the 

consequence of which is to ignore fundamental dynamics of the system.  As such, the 

capacitance values given by CoventorWare will be considered suspect. 

3.5. Fluid Damping 

In order to characterize any film damping the micromirror might experience, a 

three-dimensional, one-quarter model of the mirror plate—with the remainder modeled 

by numerical continuity—is built in COMSOL Multiphysics simulator.  A perfectly 

diffuse tangential momentum accommodation coefficient for the fluid is also assumed; 

this is reasonable based on work [69] on gas flows over pure silicon, which demonstrated 

diffuse accommodation despite orders of magnitude smoother surfaces.  Slip flow was 

Figure 12:  Damping force (N) and mirror deflection (m) vs. time (s) 
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accounted for in the simulation as well, since the system has a Knudsen number of 0.034.  

A constant potential is specified across the mirror and ground plates, and the simulation 

is conducted to record the transient response of all applicable physical forces: 

mechanical, electrical, and fluid (Figure 12).  The velocity of the plate at each sample 

period is calculated numerically in post-processing using a simple difference function in 

MATLAB.  The COMSOL-calculated damping force is then divided at each sample 

period by the plate velocity to generate an estimate of the damping coefficient, B, at 

1.1885x10-5 Ns/m.  As the plate settles to equilibrium, the velocity oscillates around zero, 

causing the estimate of B to vary severely; as such, only a small subset of samples around 

the maximum velocity are used to calculate B, as they displayed the most stable velocity 

values.  

3.6. Transient Analysis 

The above analyses quantify various physical characteristics required to describe 

the FBMD with a system-level model, which will be directly employed by the Kalman 

Filter (developed in Chapter 4) to estimate unobservable states—specifically, and for 

reasons outlined in Chapter 1, the deflection of the mirror plate.  As deflection and 

potential are interdependent upon each other and demonstrate strong, nonlinear transients, 

these characteristics are simulated together to verify the claims of stability in Section 2.7 

that were based on simple, static models.  The results are shown in Figure 13.  Despite 

beam and fluid damping transients, delays for charge accumulation (albeit minute), and 

all the nonlinearities described above, the results indicate stable equilibria are possible up 

to just over 18.3 Volts.  This value is decidedly close to the analytically derived value of 
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18.4 Volts in Chapter 2, but assumes perfect polysilicon edges and does not account for 

the “bump” in each of the flexure beams as CoventorWare does.  Beyond the sanity 

check, the transients also indicate that stability is reached within 15 to 20 microseconds, 

and, depending on the magnitude of the input, instability begins running away before 40 

microseconds.  This implies the sample rate of the controller must be 50 kHz to meet the 

Nyquist criterion, and 250 kHz for a margin of ten samples on the transient. 

 

 

Figure 13:  Mirror plate deflection (m) vs. time (s) via COMSOL.  Input voltage swept from 

zero to 18.34 V (top, diverging trajectory). 
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4. State Estimator and Controller Design 

 

4.1. Chapter Overview 

 This chapter describes the designs for the observer and controller algorithms, to 

include assumptions made in the measurement process, and concludes with an overall 

algorithm description.  It is split into three interdependent parts: the first for the observer, 

the second for the controller, and the third for the algorithm description.  The first part 

concludes with process equations used for the observer.  The second section concludes 

with the control law equations.  The last part steps through the MATLAB scripts that 

execute the first two parts. 

4.2. State Estimator Design 

The controller requires an accurate estimate of the controlled variable to be 

effective.  The observer, as such, is the lynchpin to effective control, as it provides an 

estimate of the controlled variable in spite of indirect observation and noise.  This section 

describes the design of a Kalman Filter to be applied to the FBMD as analyzed in 

previous chapters. 

4.2.1. Measurement Design and Assumptions 

Using parallel-plate capacitor charge accumulation and mirror plate dynamics 

relationships developed in Chapters 2 and 3, the observer infers a mirror plate deflection 

from measured changes in voltage across the mirror.  The proposed measurement system 

is modeled as an ideal voltmeter, to include an internal resistance of 1 MΩ.  This design 

is motivated by the ease of implementation in a lab for empirical verification, and is 



 

46 

demonstrative of a general system of electrical measurement.  To obtain the voltage 

across the FBMD, the mirror is driven by the series connection of an ideal voltmeter (in 

particular an independent voltage source and an internal resistor) and the FBMD.  The 

Norton equivalent of this circuit is employed (Figure 14), making the calculation of the 

amount of current going to the FBMD a simple application of Kirchoff’s Current Law 

(KCL): the current to the FBMD is the difference of the current source (control signal) 

and the current through the internal resistor.  Since the current through the FBMD is the 

time-differential of the voltage across it scaled by the effective capacitance at that instant 

(Equation (16)), the observable state variable is obtained as the integral of the difference 

of the control signal and the resistor current, divided by the effective capacitance at that 

moment: 

 
 (16) 

 
 (17) 

Modeling the FBMD as a voltage-controlled capacitance in this way assumes that the 

Figure 14:  Norton-equivalent driving 

circuit.  FBMD shown here as a capacitor. 
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capacitance is linear, allowing the time derivative of the capacitance to go to zero.  

As this observer will be implemented digitally, the voltmeter will sample the 

voltage across the FBMD and hold for one sample period.  This process is repeated every 

50 nanoseconds, modeling a voltmeter capable of 20 MHz operation.  The voltmeter is 

subject to thermal drift and imprecisely known internal resistance, but performs no 

filtering or buffering of more than one sample.  Other sources of noise (shot noise, cross-

talk, etc.) may be added with appropriate models; for generality, the noise in the filter 

algorithm is modeled as additive, white, and Gaussian, with a magnitude of 0.01 and 

mean of zero. 

In this work, measurements are generated in software by the MATLAB script 

get_meas().  Inputs to the script include absolute start and stop times (the products of the 

sample period and the previous and current sample numbers), the previous 

measurements, and the previous control signal, the script outputs the current sample 

period’s measurement of voltage across the FBMD, as well as the gap measurement for 

troubleshooting.  The script calculates the measurements using MATLAB’s ode45 script 

and the nonlinear functions developed in Chapter 3, with the boundary conditions 

specified by the time period taken as input by get_meas(), initial state, and control signal.  

This implementation allows for changing control signals in real-time, at the severe cost of 

calling ode45() for each sample period; pre-calculation of the control history would speed 

up the script significantly by enabling the measurement history to be pre-calculated and 

called as a look-up table.  This, however, would not be representative of a real-time 

controller implementation.   
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4.2.2. Propagation Design 

With the measurement system described in the previous section, and equations of 

motion analyzed in Chapter 3, the following state dynamics equations describe using 

nonlinear, first-order partial differential equations the system states as potential across 

mirror plates, mirror deflection, and mirror velocity: 

 

 (18) 

The state noise covariance, quantified by the matrix Q, indicates the uncertainty in the 

dynamics equations.  Real-world disturbances, such as drift, wander, and non-white 

noise, would require additional states modeled by shaping filters driven by white 

Gaussian noise.  In this work, no assumptions may be made about the deployed 

environment; rather, pseudo-noise is added the dynamics equations in an attempt to 

account for unmodeled effects.  Q can be adjusted to accommodate unexpected 

disturbances and system model inadequacies, such as the consequences of linearizing 

dynamics equations of higher polynomial orders.  The loss of the effects of higher order 

terms may be conceptually considered by the algorithm as an unmodeled disturbance and 

negotiated in the same way, by increasing the state noise covariance Q.  This increase has 

the effect of adding weight to the measured state value over the propagation calculation 

in the observer algorithm, desirable during the initial transient or large disturbances.  Too 

much weight on measurements vice calculated estimates can be detrimental to a 

detectable system.  The measurement improves the estimate of the controlled variable 
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(FBMD deflection) using a voltage in conjunction with modeled dynamics; too little 

weight on the latter creates systemic errors that the Kalman Filter has no means to 

remove.  By trial and error, it was found that values of 1x10-4, 1x10-9, and zero along the 

diagonal of Q (roughly 0.1% of each expected state magnitude) provided a good 

compromise. 

Pursuant to the assumption that small deviations from system equilibrium can be 

treated as linear, the dynamics equations are linearized before discretization.  Equations 

for equilibrium state and control values are found as functions of the desired setpoint by 

setting the dynamics equations to zero and solving for each state and for the control 

signal:  

 

 
(19) 

The dynamics equations are linearized by calculating the Jacobian and setting the states 

and control signal to their respective equilibrium values per equations previously 

described:  

 
 

(20) 
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(21) 

 

 (22) 

Q is as described in the previous section, and G is set to the identity matrix.  These 

matrices, F, B, G, and Q, along with the sample period Δt, are input to the 

equiv_discrete() script, which employs the MATLAB c2d() function to generate a 

discretized state dynamics matrix, Φ, control matrix Bd, and state dynamics noise matrix 

Qd, from respective continuous equations, each of which are used to propagate the 

estimate of state in the Kalman Filter from one sample period to the next.   

Initial conditions for each filter simulation are assumed to be at quiescence, in this 

case, zero for all states and control.  In this case, MATLAB finds difficulty numerically 

solving the differential equations starting at pure zero, thus “near” zero values of 1x10-15 

are used instead.  The state covariance matrix P has an initial value of 10 along the 

diagonal.  This value was found by trial and error to have an appropriately small transient 

behavior. 

4.2.3. Truth Generation Algorithm 

Filter performance may be judged by analysis of residuals and error history.  

Residuals are calculated by the difference of the measured values and post-propagation 

state estimates mapped to measurement space.  As described above, the measured values 



 

51 

are not empirical data, but rather are simulated by periodic solutions to nonlinear, 

ordinary differential equations (ODE)—the same equations from which the filter’s 

dynamics model are linearized.  Although residual analysis is typically very useful, it 

merely serves in this case to indicate how well the linearized filter predicts the output of a 

more robust ODE solver.  Error history analysis is essential in this case, and requires a 

dataset to act as truth for comparison.   

The FEM analysis as executed in COMSOL serves as this dataset.  As described 

in Chapter 3, the FBMD system analysis consisted of setting each plate of the FBMD at a 

constant potential and recording the time history of charge accumulation and mirror 

deflection.  By contrast, the filter applies a known (not necessarily constant) current and 

measures the change in voltage over time.  Furthermore, the FEM and filter time vectors 

do not overlap.  This disparity is overcome by considering the FEM dataset as a look-up 

table, with geterr() as a look-up script, rather than a directly analogous deflection 

trajectory to be compared point-for-point with the observer’s results.  The raw FEM data 

is first organized into structured arrays by electrical potential, while removing redundant 

data necessary for FEM accuracy.  The MATLAB timeseries command is employed to 

create, for each FEM-simulated electrical potential, a time trajectory of maximum mirror 

deflection, with which the resample command is used to match observer and FEM time 

vectors.  Resample introduces some small amount of error in the data, as it estimates data 

by linearly interpolating between times in the FEM data to align with those in the 

observer.  Once the FEM data are resampled along the observer’s time vector, geterr() 

calculates the total charge accumulated on the FBMD plates for each time sample, then 
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for the same voltage finds the charge and deflection as determined by the FEM.  The 

difference of FEM and observer charge and deflection values for each time is output as 

the error array. 

4.3. Controller Design 

The central goal of this work is to mitigate mirror snap-in and demonstrate 

controlled deflection of the FBMD throughout the gap.  To this end, the deterministic 

control law sought will achieve and maintain (requiring type-1 for modeling errors) a 

desired non-zero setpoint, and reject disturbances.  Typically, one or more system-level 

performance requirements would be levied to guide the control design.  For example, 

consider a free-space optical communications system employing an array of FBMDs for 

wavefront error correction; characteristics such as deflection accuracy of +/- 1 nm, 1 ns 

response time to steady state, and 10% overshoot may be necessary for an acceptable bit 

error rate, enabling mission success.  In this work, design choices were made primarily to 

mitigate snap-in, but system-level considerations will be indicated throughout the design 

description. 

4.3.1. Pseudo Rate Δu 

One means to effect integral control is to cost not only differences in control 

signal from the nominal u0 calculated above, but also differences between samples in 

time.  The state vector x is augmented by δu, quantifying the former, and introducing as 

the control signal Δu, each defined respectively by the following equations: 

 
 (23) 



 

53 

In so doing, both δu and Δu carry weights in the cost equation, constraining both 

appropriately with respect to system performance requirements.    

4.3.2. Cost Assignment 

The X, U, and S matrices quantify costs for state, control, and cross-terms, 

respectively, in the infinite horizon cost equation J, introduced in Chapter 2.  As 

described above, the state vector is augmented by δu, so X is a 4 by 4 matrix, declared in 

software in four parts.  The first declared, X11, is a 3 by 3 matrix and defines costs for the 

system states.  Since the pull-in voltage was found by FEM to be 18.36 volts, the cost 

assigned is 0.0025 (the inverse of the square).  Similarly, the maximum deflection is 2 

microns, so the cost is set as 2.5x1011.  Last, the velocity cost is set at unity, with the goal 

of minimizing velocity directly.  X12, as a scalar cross-term, sets the cost weight for 

between-sample dynamics of a continuous plant not captured by a discrete observer and 

controller combination.  Since the samples are taken 35 times faster than the 

characteristic time constant of the unforced system (modeled as a damped harmonic 

oscillator), the consequences of not considering interstitial time periods in the cost 

minimization is assumed to be negligible, and X12 is concordantly set to zero.  X22 is the 

cost weight on control deviations from the nominal control u0 and is a scalar.  In getGc() 

(described in the next section), this is a function of u0, effectively setting X22 as the 

inverse square of 20% of u0.  Similarly, the cost weight of the control pseudorate Δu is 

quantified by U and is defined initially as 1x104, to model a maximum current output of 

the controller is 10 mA (later tuned to 1x103 to allow a more robust response).  Finally, S 

is set to zero using the same reasoning as X12. 
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4.3.3. Dlqr to Get Gc  

Having augmented the state transition matrix Φ and discrete control injection 

matrix Bd to reflect the state augmentation described in the previous section, and defined 

the cost matrices X, U, and S, getGc() then calls the MATLAB script for discrete linear 

quadratic regulator calculation, dlqr(), passing each of these matrices as inputs.  dlqr(), 

for Discrete Linear Quadratic Regulator, calculates regulator gains that minimize the 

quadratic cost function specified earlier, as well as the infinite horizon solution of the 

discrete-time Riccati equation.  Using dlqr() here implies the assumption of certainty 

equivalence; that is, contributions from noise sources are not taken into account in the 

regulation problem.  Assuming the inputs pass dlqr requirements for a closed solution (Φ 

and Bd must be stabilizable; X and U positive definite; and no unobservable modes in the 

unit circle), getGc() outputs the dlqr() solution for Gc.   

4.3.4. Dynamics Embedding via Π, Kx
 and Kξ 

With regulator gains in hand, effort is now spent ensuring that the controlled 

variable yc drives the equilibrium to the desired setpoint yd:  

 
 (24) 

Assuming the dimensions of u and yc are equal, and the left-hand matrix is invertible, Π 

is defined [62] so as to solve for an equilibrium solution as a function of yd: 

 
 (25) 

Perturbation variables may now be defined as deviations from these equilibrium values:  
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(26) 

These perturbation variables are passed to the cost equation J, and X, U, and S contain 

weights appropriate for perturbation, rather than for the full state values.  In this way, the 

canonical LQ regulator equation, introduced in Chapter 2, is defined in terms of 

perturbation variables, in which the definitions of the perturbation variables can be 

substituted to produce a type-0, nonzero setpoint controller [62]:   

As a type-0 controller, this equation ensures that the system will settle to an equilibrium, 

though not necessarily with zero steady-state error, i.e., to yd; inevitable modeling errors 

cause imprecision in Π, creating steady-state errors.  As such, a term proportional to the 

total regulation error is motivated.  It can be shown that embedding the system dynamics 

into the controller gains, and specifically adding a signal to the perturbation controller 

proportional to the regulation error, provides the type-1 characteristic necessary to 

accommodate regulation errors [62]: 

 
 

 
(28) 

  (29) 

4.3.5. Description of Control Flow 

 
 (27) 
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A block diagram of the controller is shown in Figure 15.  Before the initial time t0, 

the system is assumed to have reached steady state; here, the system starts at quiescence.  

At t0, yd changes from yd,old to yd, which sets the initial control signal proportional to the 

regulation error, as the first and second terms of Equation (24) are zero at t0.  Using the 

propagate and measurement processes described above, the Kalman Filter produces a 

refined state update (and residuals for diagnostics as motivated in Section 2.8), which is 

passed to the deterministic PI controller.  The controller revises the control signal and 

applies the signal simultaneously to a sample-and-hold memory buffer and the FBMD 

itself (the latter only being modeled via get_meas() and geterr()).  At the start of the next 

sample period, the process repeats itself.  

4.4. Script Implementation 

This section serves as the end-to-end description of the algorithm (see Appendix), 

tying together subroutines detailed in previous sections.  The main script begins by 

 

Figure 15:  Controller block diagram assuming certainty equivalence [62] 
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declaring physical constants, sampling frequency, and sample vector length.  State and 

measurement noise covariance magnitudes are set next, and are followed by translation 

matrices H and C, which map states to measurement space, z, and controlled variable 

space, yc.  The desired deflection, yd, is declared next and used to calculate x(yd) and 

u(yd).  These latter values are used as the linearization nominal for the Jacobian matrices 

F and B, which are discretized by the sub-script equiv_discrete() to produce outputs Φ, 

Bd, and Qd.  As described above, the system dynamics model, in the form of Φ and Bd, is 

embedded in controller gains via calculation of Π.  The subroutine getGc() is called next 

and outputs controller gains associated with the infinite horizon linear quadratic 

regulation problem, as described above and as solved by MATLAB’s dlqr() routine.  The 

final controller gains, Kx and Kξ, are calculated using the formulas above.   

MATLAB suffers speed penalties for variable-sized arrays, such as those that 

expand with every sample.  To mitigate this penalty, x, P, z, u, and the residual matrices 

are preloaded as zero matrices of length equal to the sample history length, as declared at 

the beginning of script.  Last declarations are the filter initial conditions: the state vector 

x is assumed to start from quiescence; the first control signal is calculated using the 

control law derived above; and the initial covariance matrix P is found by trial and error 

to be 10*I.   

The Kalman Filter proper, here instantiated as a for loop, starts by propagating the 

state vector and covariance matrix one sample forward.  This is followed by the “update” 

process begins by calculating the denominator of the Kalman gain, A, which will be used 

later in the script for visualization of the residuals. After the Kalman gain K, a scalar, is 
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calculated, get_meas() is called to obtain the discrete measurement z, and from it the state 

estimate mapped to measurement space (the product of H and x, effectively retaining the 

first state) is subtracted to produce the residual.  This residual—the difference of the 

estimated and measured voltage across the FBMD—is scaled by the Kalman gain and 

added to the state estimate to produce the “updated” state estimate.  The covariance 

matrix is updated as well by subtracting the product of K, H, and P from P.  The last step 

in the for loop is calculating the deviation of covariance by taking the square root of the 

diagonal of P.  This for loop repeats for the entire length of the time history declared at 

the beginning of the script.   

Upon completion of the for loop, a matrix of error values quantifying the 

difference between truth, as defined above, and the observer’s estimate for each sample 

period is initialized and calculated using the geterr() subroutine.  Finally, the script 

produces two figures as visualizations of performance.  The first figure contains two 

subplots with the time history of voltage and deflection errors, respectively, and deviation 

bounds.  The second figure plots the time history of residuals and confidence bounds. 
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5. Results and Conclusions 

5.1. Introduction 

This chapter presents and discusses the results of applying the KF and LQ controller 

developed in Chapter 4 to the FBMD introduced in Chapter 1 and analyzed in Chapters 2 

and 3.  The first section discusses the KF performance, to include analysis of the 

residuals and errors from the truth model.  The next section presents the successful 

control of FBMD past one-third of the gap.  Conclusions follow this section, and the 

chapter finishes with suggestions for future work. 

5.2. Observer Results 

The linearized KF presented in Chapter 4 was first employed with various constant 

control inputs, and then with the LQ controller also developed in Chapter 4.  The 

modeling software suites themselves imposed the largest difficulty.  COMSOL does not 

do well in simulating simple circuits in conjunction with a multiphysics model, and just 

the model alone did not allow for the simulation of circuital charge flow as a result of 

conservation of energy.  With no current, all COMSOL simulations, herein used as truth 

data, were conducted with the mirror plate and ground held at constant potential.  The 

key point is that the MATLAB script, in simulating the observer design, allows for a 

varying potential across the FBMD with a constant Norton-equivalent applied current, 

whereas the COMSOL simulations are exactly opposite.  The end result is that, while the 

filter is tuned to minimize residuals and maintain a residual mean around zero, the error 

with respect to “truth” results are less definitive. 
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Time (sec) 

Filter performance is tuned primarily through adjustment of the measurement noise 

covariance and secondarily through adjustment of the filter noise covariance.  The first 

simulation takes as input a constant current of 10 μA, which results in 10 volts steady-

state across the FBMD and a deflection of 97 nm.  The observer is linearized around the 

analytical equilibrium state and control values.  Figure 16 shows that the state estimates 

are accurate and well-behaved, while Figure 17 demonstrates the residuals are steady, 

small compared state values, and centered about zero. 

 

Figure 16:  Voltage across FBMD in blue (V) and deflection in green (m) vs. time (s) 
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Figure 17:  Residuals and filter-calculated uncertainty in dashed lines vs. time; constant 

input at 10 uA 

 

Figure 18:  Top graph shows observer error in estimate of voltage; bottom graph error in 

estimate of deflection.  Constant input of 10 uA.  Diverging voltage error is an anomaly 

of get_err(). 
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 The second simulation shown takes as input a constant current of 11.29 μA, 

which analytically corresponds to an equilibrium deflection of 1.5 μm.  Figure 19 

demonstrates the snap-in very clearly, as the deflection (shown as the green line) 

increases asymptotically. Residuals and filter-computed uncertainty in Figure 20 are 

increased on average over the previous case, but remain steady and centered about zero; 

this implies that, despite being in an unstable operating point, the linearized model holds 

as valid.  The error plots in Figure 21 demonstrate the shortcoming of the geterr() script; 

since the COMSOL simulation produced no deflections of 1.5 μm, the lack of data 

manifests as accumulating error and diverging covariance. 

 

Figure 19:  KF estimate of voltage across FBMD (blue, in V) and rapidly diverging 

deflection (green, in m) vs. time (s) for constant input current of 11.29 μA 
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Figure 20:  KF-calculated residuals and uncertainty for constant input of 11.29 μA 

 

Figure 21:  Errors in estimate of voltage across FBMD (top) and deflection (bottom) vs 

time.  Note the divergence in deflection confidence, corresponding to the divergence of 

the system. 
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5.3. Controller Results 

With a working linearized KF, the LQ controller is implemented and analyzed.  The 

following set of figures show reaching and maintaining desired deflections of 1.0 μm and 

1.5 μm, respectively—each well beyond one-third of the gap. 

Figure 21 shows the deflection and control signal resulting from setting the desired 

deflection yd to 1 micron.  The mirror deflection is smooth and stable, with no overshoot 

 

Figure 22:  Voltage across FBMD (V, in blue) and deflection (m, in green) vs. time.  The 

FBMD achieves a steady deflection of 1 μm. 
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and a rise time of 1 millisecond.  Interestingly, the controller changes polarity just before 

the deflection reaches the point of instability at one-third of the quiescent gap, g0.  Figure 

22 shows the residual data for the first observer state (voltage across the FBMD) and 

filter-computed covariance.  As delineated in Section 2.8, model adequacy is reflected by 

the steady covariance, lack of bias in the residuals, and low root-mean-square value 

relative to the magnitude of the steady-state control signal.  However, the covariance 

curves fail to encapsulate the residual data, but rather are less than the absolute peak 

values of the residual data.  This implies that the KF is underestimating the variance of 

the data, which may be mitigated by increasing the dynamics noise strength Q.   

 

 

Figure 23:  Residuals and filter-computed uncertainty for yd=1.0 μm, tuned 

liberally (i.e., Q set “optimistically” or less than actual model error). 
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 For the case in which the desired deflection yd is set to 1.5 micron, the resulting 

control signal, deflection, residual data, and covariance are shown as before in Figure 23 

and Figure 24.  Figure 23 shows successful deflection through three-quarters of the gap, 

smoothly reaching equilibrium in 0.2 milliseconds without overshoot.  As before, Figure 

24 shows that the filter is tuned optimistically and underestimates the covariance.  A key 

difference between Figure 24 and Figure 22, however, is that the residuals start much 

higher, but as equilibrium is established, the residuals reduce to a level closer to the KF’s 

estimate. 

 

Figure 24:  Voltage across FBMD (V, in blue) and deflection (m, in green) 

vs. time (sec) for yd=1.5 μm 
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5.4. Conclusions 

The KF-based, LQ control implementation for an FBMD application is shown to be 

able to achieve and maintain deflections beyond the theoretical snap-in point at one third 

of the gap.  The implementation here is well suited for digital implementation, and 

eminently extendable to an array of FBMDs.  Deflection inference via electrical 

measurement has been successfully demonstrated as a faster and simpler way to realize 

feedback control.  Furthermore, precalculation of controller gains reduce required 

computational power for embedded control; one might imagine a small set of desired 

 

Figure 25:  Residuals and filter-computed uncertainty for yd=1.5 μm, tuned 

liberally. 
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deflection points for a particular set-and-hold application, and associated controller gains 

precalculated as a look-up table.  

5.5. Future Work 

Future work may include a number of directions.  First and foremost, simulation of 

feedback in a comprehensive, multi-physics environment is required to fully understand 

any cross-coupling between the FBMD and control circuitry.  Second, and perhaps in lieu 

of such an environment, an experiment may be set up such that a deflected beam be 

steered to a distance that would require FBMD deflection of more than one-third of the 

gap.  A modern, commercial microcontroller may well be able to read voltage across the 

FBMD, source a small current, and implement in real-time the precalculated control law 

presented in Chapter 4.   

The LQ control law may be extended to a command generated tracker (CGT) control 

law, with which the deflection may follow a trajectory more complicated than a simple 

set-and-hold.  With CGT control, the FBMD may be capable of “painting,” or tracking, a 

target in real-time, rather than discrete pointing control.  Other types of MEMS actuation 

may be considered as well, such as electrothermal or microfluidic.  Controller 

development for other phenomena would proceed in much the same way: by describing 

the basic physics, analyzing the system for deviations, creating a model, and translating 

that model into state space.  The more precise the model, the higher performance the KF 

is capable of achieving. 
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Appendix  
 

%Start main script 
%Physical Constant declaration 
Rint=1e6; %source resistance 
e0=8.854187817e-12; %free space permittivity 
a=1e-8./4; %effective plate area, accounting for fringe fields 
e0A=e0.*a; 
m=4.66e-11./4; %calculated plate mass 
ks=15.059./4; %simulated effective spring constant 
g0=2e-6; %initial gap space 
b=1.1885e-5; %fluid damping coefficient 
Vpi=sqrt((8.*ks.*g0.^3)./(27.*e0A)); %analytical pull-in voltage 
tc=sqrt(m./ks); %system time constant 
dt=50e-9; %nanosecond samples, 1GHz DAq 
t_last=2500e-6; 
t=0:dt:t_last; 
sam_last=length(t); 
 
 
%Filter Model parameters 
q1=1e-2; 
q2=1e-8; 
q3=1; 
Rw=0.06; 
R = (Rw);    % Measurement noise covariance 
Q = [q1 0 0;0 q2 0;0 0 q3];     % Dynamics noise strength 
 
 
%Mapping 
H = [1 0 0]; 
C = [0 1 0]; 
 
%Initialize model state and control signal 
yd=9.6996e-8;%1e-6; 
u0=(g0-yd).*sqrt((2.*ks.*yd)./(e0A.*Rint.^2)); 
x0=[u0.*Rint;yd;0]; 
 
% Discretize state dynamics matrix using Jacobian 
F=[(x0(2)-g0)./(Rint.*e0A) (x0(1)-u0.*Rint)./(Rint.*e0A) 0; 
    0 0 1; 
    e0A.*x0(1).*(g0-x0(2)).^-2./m -ks./m+e0A.*x0(1).^2.*(g0-

x0(2)).^-3./m -     b./m]; 
B=[(g0-x0(2))./e0A;0;0]; 
G=eye(3); 
[phi, Bd ,Qd]=equiv_discrete(F,B,G,Q,dt); %EENG 765,Lt Col Vazquez 
Gd=eye(3); 
Pi=inv([phi-eye(3),Bd;C,0]); 
Gc=getGc(phi,Bd,u0); %Get LQ gains 
Kx=Gc(1:3)*Pi(1:3,1:3)+Gc(4)*Pi(4,1:3); %Calc prop. gain 
Kxi=Gc(1:3)*Pi(1:3,4)+Gc(4)*Pi(4,4); %Calc pseudo-rate gain 
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%Preloads for speed 
x=zeros(3,sam_last); 
P=zeros(3,3,sam_last); 
z=zeros(2,sam_last); 
u=zeros(1,sam_last); 
A=zeros(1,sam_last); 
sigma_f=zeros(3,sam_last); 
residual=zeros(1,sam_last); 
e=zeros(2,sam_last); 
 
 
% Filter Initial conditions 
x(:,1)=[1e-15 1e-15 1e-15];  
u(1)=Kxi*(yd-C*x(:,1)); %Initial control signal assuming u0=0 and x 
steady state 
P(:,:,1)=eye(3).*1e1; 
 
 
% Kalman filter 
for k=2:sam_last 
    % Propagate 
    x(:,k)= phi*x(:,(k-1))+Bd*u(k-1); 
    P(:,:,k)= phi*P(:,:,(k-1))*phi'+Gd*Qd*Gd'; 
 
    % Update 
    A(:,k)= H*P(:,:,k)*H' + R; 
    K=P(:,:,k)*H'*(A(:,k)^-1); 
    z(:,k)=get_meas((k-1).*dt,k.*dt,[z(1,(k-1)),z(2,(k-1)),0],u(k-
1));%(t0,tf,x0,u); 
    residual(:,k)=z(1,k)-H*x(:,k); 
    x(:,k)=x(:,k)+K*residual(:,k); %(3x1)+(3x1)*(1x1) 
    u(k)=u(k-1)-Kx*(x(:,k)-x(:,k-1))+Kxi*(yd-C*x(:,k-1)); 
    P(:,:,k)=P(:,:,k)-K*H*P(:,:,k); 
    sigma_f(:,k)=sqrt(diag(P(:,:,k))); 
end % End time loop 
 
 
% Compute error states 
e=geterr(t,x(1,:),x(2,:),u); %Generate truth from FEM data 
 
% Compute statistics of the error states and plot 
figure(1) 
for j=1:2 
    subplot(2,1,j); 
    plot(t,e(j,:),t,2*sigma_f(j,:),'r--',t,-2*sigma_f(j,:),'r--') 
end 
figure(1),subplot(211);grid on 
title(['State Error and Uncertainty (2\sigma)']) 
ylabel('Voltage'); 
subplot(212);ylabel('Gap');grid on 
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figure(2) 
plot(t,residual,'o-',t,2.*sqrt(A),'r--',t,-2.*sqrt(A),'r--') 
title(['Residual and Uncertainty (2\sigma)']) 
end 
 
 
function [Gc] = getGc(phi,Bd,u0) 
phia=[phi Bd;0 0 0 1]; 
Bda=[zeros(3,1);1]; 
%should be incremental! 
X11=[0.0025 0 0;0 2.5e11 0;0 0 1];%3e3]; %max V=20 g=2e-6 v=0.0185 
X12=zeros(3,1); 
X22=1./(0.2.*u0).^2; 
Xcost=[X11 X12;X12' X22]; 
Ucost=1e3;%1e4; %assume source max 10mA 
S=zeros(4,1); 
%S=[1;0;0]; 
%E=eye(2); %same dimension as Bd 
%[Kc,L,Gc,report] = dare(phi,Bd,Xcost,Ucost) 
[Gc,S,E]=dlqr(phia,Bda,Xcost,Ucost,S) 
end 
 
function out = get_meas(t0,tf,x0,u) 
%calculates analytical solution of state dynamics given start time 
t0, 
%stop time tf, previously analytically calc'd state as initial 
condition  
%x0, and control input u 
%Output is [voltage, gap] 
[t,y]=ode45(@potent,[t0 tf],x0,[],u); 
out=y(size(y,1),1:2)'; %just take the last voltage and gap solutions 
%R_nois=0.01.*randn; %emulate +/-10% resistor tolerance 
%g_nois=0.1.*randn; %optical sensor error 
R_nois=0.1.*rand-.05; 
g_nois=0.1.*rand-.05; 
out(1,1)=out(1,1).*(1+R_nois); %voltage 
out(2,1)=out(2,1).*(1+g_nois); %gap  
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function dxdt=potent(t,x,u) 
Rint=1e6;%source resistance 
e0=8.854187817e-12; 
a=1e-8./4; 
e0A=e0.*a; 
m=4.66e-11./4; 
ks=15.059./4; 
g0=2e-6; 
b=9.4779e-4; 
dxdt(3)=0.5.*e0A.*x(1).^2.*(g0-x(2)).^-2./m-b.*x(3)./m-ks.*x(2)./m; 
dxdt(2)=x(3); 
dxdt(1)=((g0-x(2))./e0A).*(u-x(1)./Rint); 
dxdt=dxdt'; 
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function err=geterr(tobs,Vobs,Dobs,u) 
load Icap.mat 
load Qfem_CxV.mat 
load dispfem.mat 
stop=length(tobs); 
Qobs=zeros(1,stop); 
err=zeros(2,stop); 
Qobs(1)=0; 
for i=2:stop 
Qobs(i)=trapz(tobs(1,1:i),(u-Vobs(1,1:i)./Rint)); 
for j=2:length(Qfem) %find 1st time Qfem>Qobs 
    [r,c]=find((Qfem(j).q-Qobs(i))>0,1); 
    if(isempty(r))%find((Qfem(j).q-Qobs(i))>0,1,'first'))) 
    elseif(Qfem(j).q==Qobs(i)) Qflag=1 
    else %index(1,i)=find((Qfem(i).q-Qobs)<0,1,'last') 
        index=j; 
        %output=Qfem(j).v(1); 
        break 
    end 
end 
%err(1,i)=interp1(Qfem(index).q,Qfem(index).v,Qobs,'spline')-Vobs; 
%now linearly interpolate between voltages 
if(r==1 && index==2) %when Qobs is less than all Qfem data 
    last=length(Qfem(index-1).v); 
    m=(Qfem(index).q(r)-0)./(Qfem(index).v(r)-0); 
    err(1,i)=((Qobs(i)-Qfem(index).q(r)+m.*Qfem(index).v(r))./m)-
Vobs(i); 
elseif(r==1 && index>2) %when Qobs is btn discrete FEM steps 
    last=length(Qfem(index-1).v); 
    m=(Qfem(index).q(r)-Qfem(index-1).q(last))./(Qfem(index).v(r)-
Qfem(index-1).v(last)); 
    err(1,i)=((Qobs(i)-Qfem(index).q(r)+m.*Qfem(index).v(r))./m)-
Vobs(i); 
else %when Qobs falls within an FEM sim 
    last=r-1; 
    m=(Qfem(index).q(r)-Qfem(index).q(last))./(Qfem(index).v(r)-
Qfem(index).v(last)); 
    err(1,i)=((Qobs(i)-Qfem(index).q(r)+m.*Qfem(index).v(r))./m)-
Vobs(i); 
end 
end 
%err=Qobs; 
for i=1:length(Dispfem) 
    disp_resam(i).ts=resample(Dispfem(i).ts,tobs); 
end 
for tau=1:length(tobs) %for each trajectory time tau 
    for j=1:51 %and each input 
    gvsv(tau).d(j,2)=disp_resam(j).ts.data(tau); 
    gvsv(tau).d(j,1)=Qfem(j).v(1);  
    end 
    %tau; 
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err(2,tau)=interp1(gvsv(tau).d(:,1),gvsv(tau).d(:,2),Vobs(tau),'spli
ne')-Dobs(tau); 
    %errd(tau)=temp(tau)-x(2,tau); 
end 
err(2,tau)=interp1(gvsv(tau).d(:,1),gvsv(tau).d(:,2),Vobs(tau),metho
d,'spline'); 
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